
Supporting Information

PrepFlow: A Toolkit for Chemical Library Preparation and
Management for Virtual Screening
Marion Sisquellas and Marco Cecchini*

Wiley VCH Donnerstag, 26.08.2021

2199 / 217141 [S. 8/8] 1

Supporting Information

Average preparation time per ligand

Using a random selection of 600 ligands extracted from different libraries, we compared the median

preparation time per ligand on three different computing architectures, a desktop computer in the

lab (i.e. Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz 8 cores), and two HPC centers, i.e. the

Mésocentre de Calcul of the University of Strasbourg (HPC1, Intel(R) Xeon(R) CPU E5-2640 v3

@ 2.60GHz 16 cores) and the French national supercomputer GENCI-IDRIS (HPC2, Intel(R)

Xeon(R) Gold 6248 CPU @ 2.50GHz 40 cores). In each set (FDA, Prestwick, ICSN, Maybridge,

CN and ChEMBL), 100 ligands were picked randomly and merged to build a benchmark library in

SDF format. The 600 ligands were then prepared simultaneously on the different machines on a

single CPU for comparison. Once the preparation was finished, the Time.dat file was analyzed and

the preparation time per ligand DONE (see below) extracted. This information was then used to

evaluate the statistical distribution of the preparation time per ligand; see Figure S1. Since the

distributions are peaked but present long tails at large preparation times, the characteristic

preparation time per architecture was estimated from the median of the distribution. The median

preparation time per ligand was 10.47, 26.99, and 22.93 seconds on the Lab computer, HPC1, and

HPC2, respectively.

Figure S1. Statistical distribution of the preparation time per ligand on different computing architectures

using 1 CPU core.

To establish the optimal settings for using PrepFlow, the preparation of the same benchmark library

(600 ligands) was redone using an increasing number of CPU cores on the three architectures

(Figure S2). The results show that the total preparation time decreases with the number of CPU

cores. However, it appears that the scaling factor decreases rapidly, such that PrepFlow

performances plateau at 2 CPU cores on Lab computer and HPC2, and drop considerably at 8 CPU

cores on HPC1, possibly due to communication bottlenecks; see Figure S2A. Analysis of the

median preparation time per ligand provides means to quantify the gain in performances when

running on multiple cores per CPU. Consistent with results in Figure S1, ligand preparation is

always faster on the Lab computer, which is explained by the higher frequency of the CPU in these

latest-generation processors. And, when running on 2 cores per CPU, performances increase by 30-

40% on both the Lab computer and HPC2, which introduces an extra gain in performances (Figure

S2B). Altogether and based on the results above, we strongly recommend using PrepFlow on

distributing computing and if possible running on 2 cores per CPU to optimize its performances.

Figure S2. Benchmark of the preparation time of PrepFlow on three computing architectures. (A) The total

preparation time of the DONE ligands (548 over 600 ligands) on various machines is given as a function of

the number of CPU cores used. (B) The median time preparation time per ligand is displayed per architecture

depending on the number of CPU cores used.

A B

Computational time for ChEMBL (1 941 406 ligands) with 81 parallel preparations using 2

CPU cores on HPC1

𝑇ℎ𝑒𝑜𝑟𝑖𝑐𝑎𝑙 𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

=

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑇𝑖𝑚𝑒𝐵𝑦𝐿𝑖𝑔 ∗ 𝑆𝑖𝑧𝑒𝐿𝑖𝑏

3600 𝑠 ∗ 24 ℎ

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠
𝑢𝑠𝑖𝑛𝑔 2 𝐶𝑃𝑈 𝑐𝑜𝑟𝑒𝑠
𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑖𝑛 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

 1

 =

 23.99 ∗ 1941406
3600 𝑠 ∗ 24 ℎ

81

 = 6.65 days

Ratio undone ligands over the total number of ligands in each libraries:

The ratio (Formula 2) quantifies the numbers of ligands disregarded by PrepFlow.

𝑅𝐴𝑇𝐼𝑂 =
𝑈𝑁𝐷𝑂𝑁𝐸

𝑇𝑂𝑇𝐴𝐿
 2

 =
𝐸𝑅𝑅𝑂𝑅 + 𝑃𝐴𝑆𝑆

𝐷𝑂𝑁𝐸 + 𝑆𝐾𝐼𝑃 + 𝐸𝑅𝑅𝑂𝑅 + 𝑃𝐴𝑆𝑆

With DONE for the prepared ligands, SKIP for the ligands already present in the DATABASE,

ERROR for ligand presenting an error during the preparation and PASS for ligands not passing the

filtering step.

Figure S3. Ratio of disregarded ligands in the different library

 RATIO DONE SKIP ERROR PASS

PubChem

FDA

approved

0,20 1014 16 11 244

Prestwick 0,01 1500 6 9 5

ICSN 0,19 4322 96 20 1028

Maybridge 0,02 52045 103 863 341

Chimiothèque

Nationale
0,19 51317 11299 5664 9027

ChEMBL 0,05 1415978 107713 7222 72847

Table S1. Number of ligands by status in each library.

PrepFlow User Manual
In this section, we present the user manual of PrepFlow. First, the pre-requisites in terms of existing

software and libraries for the installation and use of PrepFlow are indicated. The command lines to

download and install them in the Linux operating environment are also provided. Second, all

available options and defaults in a typical PrepFlow execution are described. Third, a series of

tutorials illustrating the PrepFlow functionalities and running on a desktop computer or an HPC

environment are given.

I. Pre-requisites:

a) Python 3:

 PrepFlow is coded in python3, so it needs to be present on the machine. NumPy and

pandas, two libraries used by PrepFlow can be downloaded using:

• sudo apt-get install python3-numpy
• sudo apt-get install python3-pandas

b) ChemAxon:

 After creating an account on ChemAxon website, the marvin.deb and

structure_representation_toolkit.deb are available for download. To install

ChemAxon:

• Cxcalc and molconvert:

 - sudo dpkg -i marvin.deb

• Standardize

 - sudo dpkg -i structure_representation_toolkit.deb

• The license (license.cxl) is mandatory to use these tools, it can be asked

on the website of ChemAxon. Once the license is given, the license.cxl

need to be put in the .chemaxon folder present in the user home.

c) RDKit:

 A virtual environment is required to use RDKit. Using the following command line a

virtual environment, called virtual_env, is created using Conda with RDKit ready to be used.

• conda create -c conda-forge -n virtual_env rdkit

 Once the virtual environment is created, it can be activated and deactivated as

required. When it will be activated RDKit will be available.

• conda activate virtual_env
• conda deactivate virtual_env

d) Export the path of PrepFlow to use it with the PrepFlow tag name

 Add PrepFlow to your .bashrc

• export PREPFLOW_HOME=/PATH/PREPFLOW/

• export PATH=${PATH}:${PREPFLOW_HOME}/bin/
II. Options:

 PrepFlow presents two types of options, mandatories and optional. The mandatories must be

provided to launch the preparation unlike the optional that have default values.

 To discover all the options available on PrepFlow:

 -h, --help show this help message and exit

a) Mandatory Options:

Parameter Description

-i Input file in SDF or SMILES format

-proto Name of the preparation folder

-database Name of the library prepared in the database folder

b) Optional:

• Input file:

Parameter Default Value Description

--header_smile_file [No/Yes] To specify if the SMILES input file contains a header

--separator_smile_file [‘,’] To specify the separator field in the SMILES input file

• Filtering

Parameter
Default

Value
Description

--prepare_all_atom [no/yes]

By default, ligands presenting an

atom not in the list ['H', 'B', 'C', 'N',

'O', 'P', 'S', 'F', 'Cl', 'Br', ‘I’] are

discarded. To prepare all the atoms

option yes

--number_maximum_chiral_center_undefined 3

Ligands with a number of undefined

chiral center larger than the

threshold are discarded, by default 3

--number_size_ring_max 7

Ligands with rings larger than the

threshold are discarded, by default 7-

membered rings.

--number_rotatable_bonds_max 20

Ligands presenting a number of

rotatable bonds upper the default

value are passed

• Database

Parameter Default Value Description

--database_path [no/path to database folder] Path of the database to increment

--database_name [no/name of the database folder]

By default PrepFlow name the

database folder DATABASE, with this

flag it can be change

• Preparation

Parameter Default Value Description

--ph 7.0
pH value used to compute the dominant tautomers

distribution, by default 7.0

 --lim_tauto 10
Discard tautomers whose occurrence probability is lower

than the threshold, by default 10%

• HPC Launching

Parameter Default Value Description

—hpc [no/yes] To launch on HPC

--header_hpc [no/header file]
Header of the launching system used

on HPC (i.e. slurm)

--number_ligands_by_files 1500

When running in parallel, PrepFlow

launches multiple preparations on

different CPU. This parameter defines

the maximum number of ligands per

job, by default 1500.

--archive_summary [no/ARCHIVE file] Archive file

• Merging after HPC preparation

Parameter Default Value Description

Parameter Default Value Description

—merge [no/yes]

To concatenate all the output of

PrepFlow on HPC in one protocol

folder and one database

• Implementation Database after HPC preparation

Parameter Default Value Description

—database_update [no/yes]

To concatenate all the

output of PrepFlow on

HPC

—ligands_to_extract [no/yes]

 File containing the

ligands to extract from

the database

• Statistics

Parameter Default Value Description

--statistics [No/Yes]

To calculate the features

distributions of the input

file, no preparation is

done

III. Tutorials

 The tutorial provides examples to launch PrepFlow with different input files, i.e. SMILES or

SDF. The SMILES file, Trypsine_10L.smi, contains 10 ligands, each row is composed by the name

of the ligand and its smile. The file, Trypsine_3L.smi, contains only the 3 first ligands of

Trypsine_10L.smi. The SDF file, ChEMBL_10L.sdf, also presents 10 ligands.

 The use of PrepFlow is shown on several machines, i.e. a lab computer and an HPC, with or

without the archive strategy.

a) Launching PrepFlow interactively

• Tuto 1: Preparation of a SMILES file input

PrepFlow -i Trypsine_10L.smi -proto Trypsine -database Trypsine

--header_smile_file yes --separator_smile_file ','

• Tuto 2: Preparation of a SDF file input

PrepFlow -i ChEMBL_10L.sdf -proto ChEMBL -database ChEMBL

• Tuto 3: Launching two preparations using the same database

 First library:

PrepFlow -i Trypsine_10L.smi -proto Trypsine -database Trypsine

--header_smile_file yes --separator_smile_file ','

 Second library using the same archiving system:

PrepFlow -i ChEMBL_10L.sdf -proto ChEMBL -database ChEMBL

--database_path /[PATH]/Tuto_3/DATABASE/

• Tuto 4: Launching twice the same ligands to use the database extraction

 First library:

PrepFlow -i Trypsine_3L.smi -proto Trypsine_3L -database Trypsine

--header_smile_file yes --separator_smile_file ','

 To prepare Trypsine.smi again but with new ligands:

PrepFlow -i Trypsine_10L.smi -proto Trypsine_10L -database

Trypsine --header_smile_file yes --separator_smile_file ',' --

database_path /[PATH]/Tuto_4/DATABASE/

b) Launching PrepFlow on HPC

To launch calculations on HPC, a header for the job scheduler operating on the master

node is required, an example of a slurm header is presented in Figure S4. The SBATCH

lines can be modified to specify to the HPC the partition to use (-p), the name of the job (--

job-name=), the number of nodes (-N), the number of cores (-n) and the maximum

execution time requested (-t). According to the HPC used, it may be necessary to load

modules for the software to function properly.

#! /bin/bash

CPU 1 node 2 cores

#SBATCH -p public

#SBATCH --job-name="Preparation"

#SBATCH -N 1

#SBATCH -n 2

#SBATCH -t 24:00:00

module load python/python3

Figure S4: Example of a slurm header

i) Without the archive system

• Tuto 5: Launching on HPC

PrepFlow -i ChEMBL_10L.sdf -proto ChEMBL -database ChEMBL --hpc

yes --header_hpc header_HPC_example.txt --number_ligands_by_files

2

• Tuto 6: Merging after Launching on HPC

PrepFlow -i ChEMBL_10L.sdf -proto ChEMBL -database ChEMBL --hpc

yes --header_hpc header_HPC_example.txt --number_ligands_by_files

2 --merge yes

• Tuto 7: Incrementation DATABASE after HPC

PrepFlow -i ChEMBL_10L.sdf -proto ChEMBL_all -database ChEMBL --

hpc yes --header_hpc header_HPC_example.txt --

number_ligands_by_files 2 --database_update yes --database_path

/[PATH]/Tuto_7/DATABASE

ii) With the archive system

• Tuto 8: Launching on HPC with ARCHIVE file

PrepFlow -i Trypsine_10L.smi -proto Trypsine -database Trypsine

--header_smile_file yes --separator_smile_file ',' --hpc yes

--header_hpc header_HPC_example.txt --number_ligands_by_files 2
--archive_summary ARCHIVE.txt

• Tuto 9: Merging after Launching on HPC with ARCHIVE file

PrepFlow -i Trypsine_10L.smi -proto Trypsine -database Trypsine

--header_smile_file yes --separator_smile_file ',' --hpc yes

--header_hpc header_HPC_example.txt --number_ligands_by_files 2
--archive_summary ARCHIVE.txt --merge yes

• Tuto10: Incrementation DATABASE after HPC with ARCHIVE file

cd Trypsine

PrepFlow -i Trypsine_10L.smi -proto Trypsine_all -database

Trypsine --header_smile_file yes --separator_smile_file ','

--hpc yes --header_hpc header_HPC_example.txt --
number_ligands_by_files 2 --database_update yes --database_path

/[PATH]/Tuto_10/DATABASE --ligands_to_extract

Ligands_to_extract_in_archive.txt

